//==========================================================================
//
//   st_number.h
//
//==========================================================================
// $Id: st_number.h,v 1.13 2000/01/05 16:32:40 raitner Exp $

#ifndef GTL_ST_NUMBER_H
#define GTL_ST_NUMBER_H

#include <GTL/GTL.h>
#include <GTL/graph.h>
#include <GTL/node_map.h>
#include <GTL/edge_map.h>
#include <GTL/algorithm.h>

#include <list>
#include <utility>

__GTL_BEGIN_NAMESPACE

/**
* @internal
*/
class GTL_EXTERN pathfinder 
{
public:
	
    //--------------------------------------------------------- CONSTRUCTOR
	
    pathfinder (const graph& G, edge st, node s);    
	
    bool is_valid ()
	{ return is_biconn; }
	
	
    //--------------------------------------------------------- ITERATOR
	
    class const_iterator 
    {
    public:
	const_iterator (pathfinder& _pf) : pf (_pf) { }
	const_iterator (pathfinder& _pf, node n);
		
		
	const_iterator& operator++();
	const_iterator operator++(int);
	const node& operator*() const 
	    { return curr; }
		
	bool operator== (const const_iterator& it) 
	    {return curr == it.curr; }
	bool operator!= (const const_iterator& it)
	    {return curr != it.curr; }
		
    private:
	enum iteration_state {END, UP, DOWN};
	iteration_state state; 
	node curr;
	pathfinder& pf;
    };
	
    const_iterator path (node n) 
	{ return const_iterator (*this, n); }
	
    const_iterator end () 
	{ return const_iterator (*this); }
	
private:
		
    //--------------------------------------------------------- FUNCTIONS
		
    void dfs_sub (node&, node&);
		
		
    //--------------------------------------------------------- MEMBERS 
		
    node_map<int> dfs_num;
    node_map<int> low_num;
    node_map<list<edge> > tree;
    node_map<list<edge> > back;
    node_map<list<edge> > forward;
    node_map<list<edge>::iterator> to_low;
    node_map<list<edge>::iterator> to_father;
		
    typedef pair<list<edge>::iterator, list<edge>::iterator> pos_pair;
    edge_map<pos_pair > pos;
    node_map<int> used;
		
    int act_dfs_num; 
    int new_nodes;
    bool is_biconn;
		
    friend class const_iterator;
};

/**
* @short ST-number algorithm.
*
* Encapsulates the st-number algorithm together with all the data produced by it. 
* <p>
* Assigns an integer <code>st[n]</code> to each node <code>n</code> of a undirected,
* biconnected graph, such that each node is connected with at least one node having
* a smaller and with at least one having a larger number than itself. The only 
* exception to this rule are the endpoints of edge <code>st</code> connecting nodes 
* <code>s</code> (st-number 1) and <code>t</code> (highest st-number)
* <p>
* The following options are supported:
* 
* <ul>
* <li> @ref st_number#st_edge sets/retrieves the edge that connects the node 
*      with the lowest number to that with the highest.
* <li> @ref st_number#s_node sets/retrieves that endpoints of the 
*      @ref st_number#st_edge, which gets number 1.
* </ul>
*
*/
class GTL_EXTERN st_number : public algorithm 
{
public:
    /**
     * Creates st-number object. Please note that there are no reasonable 
     * default settings for the parameters, i.e. the edge <code>st</code> 
     * connecting the lowest with highest numbers node and which of its 
     * endpoints should get number 1 (= node <code>s</code>) has to be specified 
     * always.
     */
    st_number () : algorithm () { };

    /**
     * Destructor
     */
    virtual ~st_number () { };
	
    /**
     * Sets edge <code>st</code> for the next run. 
     *
     * @param <code>e</code> edge <code>st</code>
     */
    void st_edge (edge e) 
	{ st = e; }

    /**
     * Get edge <code>st</code>.
     *
     * @return edge <code>st</code>.
     */
    edge st_edge () const
	{ return st; }

    /**
     * Sets node <code>s</code> for next run. This must be one of the endpoints 
     * of edge <code>st</code>. This node will get st-number 1 and thus the other 
     * endpoint will get the highest st-number.
     *
     * @param <code>n</code> node <code>s</code>
     */
    void s_node (node n) 
	{ s = n; }

    /**
     * Get node <code>s</code>
     *
     * @return node <code>s</code>
     */
    node s_node () const 
	{ return s; } 
	

    /**
     * Returns st-number of node <code>n</code> as determined in the last run.
     *
     * @param <code>n</code> node
     * @return st-number of <code>n</code>
     */
    int& operator[](const node& n)
	{ return st_num[n]; }
    
    /**
     * @internal
     */
    typedef list<node>::iterator iterator;

    /**
     * @internal
     */
    typedef list<node>::reverse_iterator reverse_iterator;
	
    /**
     * Iteration through the nodes of graph st-numbered in last
     * run in st-number order, i.e. from 1 to highest st-number.
     *
     * @return start of iteration through nodes in st-number order 
     */
    iterator begin() {
	return st_ord.begin();
    }	

    /**
     * Iteration through nodes of graph in st-number order
     *
     * @return end of iteration through nodes of graph in st-number order
     */
    iterator end() {
	return st_ord.end();
    }
	
    /**
     * Iteration through the nodes of graph st-numbered in last
     * run in reverse st-number order, i.e. from highest st-number down to 1.
     *
     * @return start of iteration through nodes in reverse st-number order 
     */
    reverse_iterator rbegin() {
	return st_ord.rbegin();
    }
	
    /**
     * End of iteration through nodes of graph in reverse st-number order
     *
     * @return end of iteration through nodes in reverse st-number order 
     */
    reverse_iterator rend() {
	return st_ord.rend();
    }
	

    /**
     * Checks whether st-number algorithm can be applied to <code>G</code>. 
     * Besides from the trivial preconditions that edge <code>st</code> and 
     * node <code>s</code> lie in <code>G</code> and <code>s</code> is really
     * an endpoint of <code>st</code> (which isn't checked), <code>G</code>
     * must be undirected and biconnected. Note: As for all algorithms in GTL, 
     * <code>check</code> must be called, because it might do some 
     * initialization.
     *
     * @param <code>G</code> graph
     * @return <code>GTL_OK</code> iff st-number algorithm may be applied
     * @see algorithm#check
     */
    int check (graph& G);


    /**
     * Runs st-number algorithm on graph <code>G</code>. It is assumed that 
     * <code>check</code> was called previously and returned <code>GTL_OK</code>.
     *
     * @param <code>G</code> graph 
     * @return <code>GTL_OK</code> iff <code>G</code> could be correctly st-numbered
     * @see algorithm#run
     */
    int run (graph& G);


    /**
     * Resets algorithm in order to be applied to the next graph. This will delete 
     * most of the information obtained in the last run.
     * 
     * @see algorithm#reset
     */
    void reset () {
	st_ord.erase (st_ord.begin(), st_ord.end());
    }
	
protected:
    /**
     * @internal
     */    
    edge st;

    /**
     * @internal
     */
    node s;

    /**
     * @internal
     */
    pathfinder* pf;

    /**
     * @internal
     */
    list<node> st_ord;

    /**
     * @internal
     */
    node_map<int> st_num;
};

__GTL_END_NAMESPACE

#endif // GTL_ST_NUMBER_H

//--------------------------------------------------------------------------
//   end of file
//--------------------------------------------------------------------------
    

Documentation generated by raitner@hyperion on Tue Mar 7 09:40:04 CET 2000
Kdoc